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Abstract

We describe a two-layer architecture for supporting semantic interpretation and
domain reasoning in dialogue systems. Building systems that support both semantic
interpretation and domain reasoning in a transparent and well-integrated manner
is an unresolved problem because of the diverging requirements of the semantic
representations used in contextual interpretation versus the knowledge represen-
tations used in domain reasoning. We propose an architecture that provides both
portability and efficiency in natural language interpretation by maintaining separate
semantic and domain knowledge representations, and integrating them via an on-
tology mapping procedure. The ontology mapping is used to obtain representations
of utterances in a form most suitable for domain reasoners, and to automatically
specialize the lexicon. The use of a linguistically motivated parser for producing se-
mantic representations for complex natural language sentences facilitates building
portable semantic interpretation components as well as connections with domain
reasoners. Two evaluations demonstrate the effectiveness of our approach: we show
that a small number of mapping rules is sufficient for customizing the generic seman-
tic representation to a new domain, and that our automatic lexicon specialization
technique improves parser speed and accuracy.

1 Introduction

This paper presents an architecture of a language interpretation system that integrates
semantic interpretation and domain reasoning tasks in a portable and efficient way.
Medium-scale dialogue systems for applications such as intelligent planning assistants or
tutorial dialogue involve complex reasoning and planning tasks. Building such systems
requires integrating two strands of current research: semantic interpretation and its
connection to domain reasoning. We define semantic interpretation as the process of
determining the meaning of an utterance in context, including tasks such as as speech
act identification, reference resolution, fragment interpretation and discourse context
update. Domain reasoning is the task of determining an appropriate system response to
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the user’s actions, which requires relating natural language to non-linguistic knowledge
sources such as databases, reasoners and planners.

Effective language processing in dialogue systems involves the production of repre-
sentations for natural language that can be used both in semantic interpretation and in
efficient domain reasoning. Sophisticated semantic representations such as UDRS [24]
or MRS [15] are supported by deep grammars such as LINGO ERG [14] or XLE [37].
However, these semantic representations are limited to features that can be reliably
extracted from syntax, which presents difficulties for their application in domain rea-
soning tasks (see Section 2.2 for discussion). As a result, practical systems using these
representations have been implemented only in small domains requiring fairly simple
domain knowledge, such as appointment scheduling [30]. Dialogue systems that use
more complex domain reasoners tend to rely on either on domain-specific grammars,
or on wider-coverage syntactic grammars with domain-specific lexicons [42, 33, 17, 28].
However, the language components in such dialogue systems are difficult to port to new
domains because of their domain-specific representations. They are also not easily ex-
tended to handle complex phenomena in semantic interpretation because the knowledge
representation languages used for efficient reasoning are not well-equipped to represent
the features needed for contextual interpretation, for example, underspecification or
representations for context-dependent entities such as pronouns.

This division reflects a general distinction between linguistic and pragmatic knowl-
edge and domain knowledge. Linguistic and pragmatic knowledge is generally domain-
independent. Many algorithms for reference resolution [10], intention recognition [8],
dialogue management [32] and fragment interpretation [44] are formulated using generic
notions such as plans and resources. They may need to call on domain reasoners to
verify that something is a resource or a plan in the given domain, but the core of the
algorithm uses general knowledge about dialogue that does not change between applica-
tions. Domain reasoners, however, are built to encode knowledge and support efficient
queries and inferences within a given domain. We address the problem of how to build
parsers and grammars that support the diverging representation requirements imposed
by those tasks.

We propose a parsing and interpretation system architecture that combines the bene-
fits of a wide-coverage deep parser for semantic interpretation with customization tech-
niques to support efficient domain reasoning. The parser builds representations that
support semantic interpretation in multiple domains using a lexicon linked to a domain-
general language ontology (constructed with the aid of several task-oriented dialogue
corpora). The domain-general semantic representations are linked with knowledge rep-
resentations in specific domains via an ontology mapping technique. Maintaining a
domain-general grammar and lexicon facilitates building interpretation components that
are easy to port across domains, while our ontology mappings provide customized con-
nections to the domain knowledge representation. Moreover, we develop an automatic
method of specializing the lexicon based on the ontology mappings that significantly
improves parsing speed and accuracy for in-domain sentences, while maintaining porta-
bility and reusability in the grammar and lexicon.

We demonstrate the effectiveness of this approach by evaluating the performance of
the same wide-coverage grammar and lexicon in two different domains. We show that
the parser performs similarly in both domains, and that a small number of mapping rules
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Figure 1: Knowledge representations in the TRIPS system architecture. Notation in
square brackets indicates different representation languages used in the system, discussed
in more detail in Section 3.

is sufficient for specialization to a new domain. We also show that lexicon specialization
results in significant gains in accuracy and reductions in parsing time for in-domain
utterances.

The paper is organized as follows. In Section 2 we present the general architecture of
our system and show how the diverging needs of semantic interpretation and domain rea-
soning motivate our two-layer architecture. We describe our customization method for
converting the domain-independent semantic representations into domain-customized
representations for reasoning in Section 3. We discuss our lexicon specialization tech-
nique in Section 4. System evaluations are presented in Section 5, and Section 6 discusses
how our method can be integrated with other parsing and interpretation approaches and
concludes with an overview of related work.

2 Motivation and Background

2.1 Natural Language Understanding in a Multi-domain System

This work is grounded in our experience in building TRIPS, a task-oriented spoken
dialogue system that has been deployed in a number of domains, including train routing
(TRAINS [5]), emergency response planning (Pacifica [2], Monroe [47]), medication
scheduling (Medadvisor [4]) and learning tasks on the web [29].



The architecture of the interpretation components in the system is shown in Figure 1.
The parser is used to process the natural language input, the Interpretation Manager
(IM) manages reference resolution, dialogue management and collaborative problem
solving tasks, and the Behavioral Manager determines system behavior using reasoners
specific to the domain and application.

This architecture separates the domain-independent and domain-specific compo-
nents in the system. Domain-independent conversational expertise is localized in the
IM, which does not change between domains. In contrast, we use different reasoners in
different domains, choosing those which can accomplish the domain tasks with optimal
speed and accuracy. So far, with this architecture we have used the KM reasoner [13],
the TRIPS planning system, the LOOM description logic system [35], and reasoners
using OWL ontology representations.

Most utterances contain a mixture of content, some of which is handled by the do-
main reasoners, but some by the IM. For instance, in the sentence What if we went
along the coast instead, the content of the speech act (going along the coast) is domain-
specific, but the utterance also contains domain-general words (what if, instead). These
words indicate that the IM should form a hypothetical query about an alternative to
the current problem-solving act. The strategy for dealing with such constructs is in-
dependent of the specific back-end reasoner. It is handled by a domain-independent
intention recognition model within the IM [1]. Separating out domain-general semantic
representations therefore enables re-use of the IM components in new domains without
the need to adapt them to new knowledge representations.

2.2 Linguistic Ontology Versus a Domain Model

Existing deep parsers build semantic representations using features that can be reliably
inferred from syntax, but do not address the problem of producing semantic represen-
tations for content words which can be directly used for reasoning. They represent,
for example, information for reference resolution and fragment interpretation based on
quantifiers and syntactic constraints on fragments [44]. For content words, however, they
assume that sense distinctions are perfectly correlated with syntactic behavior. For ex-
ample, in the LINGO ERG lexicon, a verb with two different meanings reflected in
different subcategorization frames will be assigned two different senses; but senses with
identical syntactic distributions, e.g., bank as an institution and bank as a geographical
object, are not differentiated.

Such syntactically based word senses are not best suited for efficient domain reason-
ing. The meaning of concepts based on their syntactic behavior is not always clear, as
syntactic and semantic structures are not perfectly correlated in practice. Additionally,
reasoning in many knowledge representations such as LOOM [35] or KM [13] is incom-
plete in various ways, and queries that closely follow a natural language formulation
may be inefficient [20].

Our approach is instead to establish a domain-specific mapping between the word
senses selected by the parser and the concepts in the domain model. This task is
easier in many respects, because many words have only a small number of senses within
the context of a given domain. However, the mapping is not straightforward because
domain-specific representations often do not line up well with linguistic structure.
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Figure 2: Ontology fragment for physical objects in TRIPS Pacifica domain.

As an example of a domain-specific ontology, consider our Pacifica transportation
domain. In this domain, the user is given the task of developing a plan to evacuate a
fictional island before a storm. A fragment of the ontology for physical objects used by
the planner in Pacifica is shown in Figure 2. The top-level distinction is made between
fixed objects such as geographical locations, and movable objects such as commodities
suitable for transportation. People are classified as a kind of commodity because they
are transported as cargo in the Pacifica scenario.

The planner knows 3 main actions: move, load and transport. move is the
action when a vehicle is moved, load is the action of loading a vehicle with cargo, and
transport is the action of transporting cargo, which may involve choosing and loading
a suitable vehicle. The move and transport actions both take a path argument, which
is a complex-valued description of type geo-path with slots representing the origin, the
destination and optionally interim points on the path. Ontology definitions representing
those actions are shown in Figure 3.

Although this ontology is optimally suited for planning and reasoning in the Pacifica
domain, it is not the best choice for a semantic representation, especially in a multi-
domain system. Design choices for the Pacifica domain such as making a top-level
distinction between movable-obj and fixed-obj and classifying people as commodity
are counterintuitive in domains that are not specialized for transportation, such as
medication scheduling and computer purchasing. In addition, type restrictions tailored
for Pacifica are not well suited to other domains. For example, the sentence I moved
to a different city does not satisfy the type constraints of either move or transport,
because in Pacifica only vehicles can move objects between locations.

KR concept types and their slots in the domain ontology are also not well-suited to
straightforward alignment with linguistic structure. The values of complex :path slots
can come from a variety of expressions for path phrases, e.g., to, toward for :destination;
through, via, by for :via; and occasionally from subcategorized complements, as in Leave
Avon for Bath at 5pm. It proved difficult to handle this kind of variation in the grammar
without introducing domain-specific rules that were not applicable in other domains. A
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Figure 3: Action ontology fragment in TRIPS Pacifica domain. The move and trans-
port arguments have a slot Path which is filled with a frame of type geo-path.

representation more suitable for a general-purpose grammar is a general motion type
with :To-Loc and :From-Loc arguments, which can be filled by either subcategorized
complements or by adjuncts as needed.

To balance the needs of domain-specific and domain-general representations, we
separate the ontology used in parsing and semantic interpretation (the LF ontology)
from the ontology used in reasoning (the KR ontology). The design considerations for
the LF and KR ontologies are summarized in Table 1.

In the LF ontology we go a step beyond purely syntax-based word classes by introduc-
ing word senses that depend both on syntactic distinctions and on semantic properties
that we do not expect to change between domains. For example, all motion verbs are
classified under a general LF::Motion type, which covers various instances of objects
being moved and includes subtypes for more specific motion events such as transfor-
mation, transfer or filling a container. They also differentiate between objects based
on a small set of general semantic features such as general type (physical object, ab-
stract object or action), origin (living or non-living) etc. These features are based on
a domain-independent EuroWordNet feature set [51] which we modified to better suit
parsing purposes [23].

The LF ontology contains linguistically motivated semantic types and associated
roles for events, objects and properties. The semantic roles can be straightforwardly
linked to syntax with simple templates specified in the lexical entries (see Section 4.1).
In this way, the semantic representation derived from the LF ontology abstracts away
from specific surface realizations, so that syntactic alternations such as Load the truck
with oranges and Load the oranges into the truck have identical semantic interpretations.

The hierarchical structure of semantic types in the LF ontology provides a stepping-
stone for linking semantic and domain representations, by defining semantically moti-
vated word senses which can be disambiguated based on a combination of syntactic and
semantic features. This simplifies the connection with domain reasoners by providing



LF Ontology KR Ontologies
As general as possible, broad coverage
of concepts

Domain-specific concepts and organi-
zation

Relatively flat structure, linguistically
motivated concepts and sense distinc-
tions

Deeper structure, with fine-grained dis-
tinctions between concepts as relevant
to domain

Simple representations with semantic
roles easily linked to syntactic struc-
ture

Concepts and slots organized for effi-
cient reasoning without regard for lin-
guistic structure

Table 1: Design considerations for LF and KR ontologies.

a useful level of abstraction over syntactic representations, as discussed in Section 4.1.
See [22, 19] for detailed discussion of our LF ontology design and content.

3 From Generic LF Representation to Customized KR
Representation

The transformation from LF representation to KR representation consists of two steps:
mapping the ontological concepts in the LF (LF types) into the domain-specific on-
tological concepts in the KR (KR classes); then converting the domain-independent
LF-representation syntax into the syntax required by the KR.

In this section, we discuss only the ontology mapping, the most difficult part of the
process. Our transform engine converts the LF syntax into AKRL, an abstract syntax
using the KR ontology concepts. It is then relatively simple to convert between AKRL
and the domain-specific KR syntax. We have implemented transforms from AKRL to
representations in KM, which is a frame-based language, and LOOM [35], a description
logic language. For brevity, our examples omit this part of the transformation, present-
ing the results of transforming the LF expressions directly into the target KR language
syntax.

Mapping between the ontologies requires solving two problems: mapping the con-
cepts and aligning the arguments. Given an LF type from the semantic representation,
we first have to determine the KR type to which it corresponds. Once the concept
type correspondence has been established, we need to align the semantic roles of the
LF type with the appropriate slots in the KR representation. As discussed in Section
2.2, this alignment may not be straightforward. We therefore develop a system of trans-
forms to account for the different possible alignments between the semantic and domain
representations.

3.1 LF and KR Representations

Our semantic representation is a flat unscoped neo-Davidsonian representation, using
event arguments and semantic roles. It is similar to QLF [6] and Minimal Recursion
Semantics [15] in that it uses identifiers to link the (non-recursive) terms together.



(F e123 (:* LF::Fill-container load) :Agent pro1 :Theme v1 :Goal v2)
(IMPRO pro1 LF::Person :context-rel *YOU*)
(THE v1 (SET-OF (:* LF::Fruit orange)))
(THE v2 (:* LF::Vehicle truck))

Figure 4: LF representation of the sentence Load the oranges into the truck.

(define-type LF::Motion
:sem (Situation (Aspect Dynamic))
:arguments (:Theme (Phys-obj (Mobility Movable)))

(:Source (Phys-obj))
(:Goal (Phys-obj))

(define-type LF::Fill-container
:parent LF::Motion
:sem (Situation (Cause Agentive))
:arguments (:Agent (Phys-obj (Intentional +)))

(:Goal (Phys-obj (Container +))))

Figure 5: LF type definitions for LF::Motion and LF::Filling. In the lexicon, feature vec-
tors from LF arguments are used to generate selectional restrictions based on mappings
between subcategorization frames and LF arguments.

A (simplified) example representation for Load the truck with oranges is shown in
Figure 4. The representation is a set of terms in the form

(<specifier> <variable> <type> <argument>*)

where the specifier can be F for predicates produced by verbs and adjectives, a quanti-
fier for noun phrases, and IMPRO for implicit arguments, such as subjects of imperatives.
Note that in this paper we omit tense, aspect, speech act and some referential informa-
tion from our examples for simplicity.

The LF form in Figure 4 identifies the sense of the main verb load as an instance
of concept LF::Fill-container.1 It identifies oranges as a :Theme argument of the filling
action, that is, the object being moved, and truck as a :Goal of the filling action. Since
the sentence is an imperative, the parser also infers an implicit pronoun as its subject,
corresponding to the :Agent role. A special notation is used to denote word types: they
are in the form (:* LF::lf-type lex-form) where the lf-type is the word sense from
the LF ontology, e.g., LF::Fill-container, and lex-form is the base form of the word.
The primary reason for including both semantic type and form is to balance generality
and computability in our domain-independent lexicon [22]. Domain applications can
use the sense information encoded in the LF type, but may also use the precise word
form in reasoning.

1The first version of the LF ontology was based on a pre-release version of FrameNet [27] where
LF::Filling was declared the appropriate type for this sense of load.



(AND (TYPE e1 load) (actor e1 YOU123)
(cargo e1 oranges2) (vehicle e1 truck3))
(The oranges2 (type oranges2 orange))
(The truck3 (type truck3 truck))

Figure 6: A sample description in the TRIPS WKB language representing Load the
truck with oranges.

The corresponding LF ontology entries are shown in Figure 5. The full details of
these representations are beyond the scope of this paper. In brief, the LF types are
a domain-independent representation inspired by FrameNet [27], with a simpler set of
semantic arguments, and augmented with typed feature vectors [22, 23]. We use vectors
of semantic features as a flexible semantic representation for selectional restrictions
which can be easily extended with new features, a property crucial for the lexicon
specialization algorithm discussed in Section 4. We discuss how the LF representations
are obtained from natural language input in Section 4.

An example of a KR representation used for reasoning is given in Figure 6. Apart
from changing the representation syntax, the main goal in LF to KR mapping is to
find correspondences between predicates and arguments in LF and KR representations.
Examples in this section are based on mappings between LF representations and KR
representations consistent with the Pacifica ontology from Section 2.2. However, they
represent the general cases we found necessary to map between the ontologies in different
domains supported by the TRIPS system.

3.2 Determining the KR Type of an Expression

The correspondence between the LF and KR ontologies is established through mappings
that link each relevant LF type to a corresponding KR class. For example, the transform
in Figure 7(a) states that (:* LF::Vehicle truck) corresponds to the truck class in the
domain ontology.

The transforms utilize the hierarchical structure of the LF ontology to map larger
classes of words. For example, if we declare a transform LF::Transport → transport,
then all children of type LF::Transport must map into the transport predicate on the
domain side, unless a more specific transform applies. This reduces the effort involved
in linking between the ontologies. For example, in the Pacifica domain a variety of
movement verbs that can be interpreted as a transport action are covered by a single
transform.

The mapping may become more complicated if words with the same LF type need to
be split between multiple KR classes. For example, all medication names are assigned
the same type, LF::Medication, in the LF ontology, but in the medication scheduling
KR representation those are further subdivided into different domain-specific drug cate-
gories. Such complex alignments are supported in our transform system through several
additional mechanisms: using lexical forms of words in transforms, exceptional rules for
specific subtypes of a more general LF, and restrictions on transform application.

Using lexical forms in the transforms is possible because many ontologies are designed



(a) (define-lf-to-kr-transform truck-transform
:typetransform ((:* LF::Vehicle truck) → truck )

(b) (define-lf-to-kr-transform medication-transform
:typetransform ((:* LF::Medication ?lf-form) → ?lf-form )

Figure 7: Transforms to establish the correspondence between an LF and a KR type
(a) a simple transform based on a specific type (b) a more complex transform utilizing
a lexical form.

to be human-readable and have consistent naming schemes for KR types. An example of
a transform using a lexical form is given in Figure 7(b). In this case, for any item of LF
type LF::Medication, its lexical form will be used as its KR type. This transform utilizes
the property of the KR ontology in our Medadvisor domain where medication names
serve directly as type names in the ontology. Thus, (:* LF::Medication Aspirin) will
be transformed into the KR type Aspirin, and (:* LF::Medication Zoloft) into the KR
type Zoloft. Our implementation also supports an easy extension to obtain a KR type
from the lexical form by calling a function from within a transform. This can be used,
for example, to add a prefix to a lexical form, obtaining, for example medicine zoloft
as a type name.

Using the lexical form in transforms is easiest if the KR ontology is in effect a
domain-specific extension of the LF ontology - for example, all medications are still
subtypes of a single KR type corresponding to a concept “medication”. In that case the
transforms can be applied straightforwardly, though consistency checking is necessary
to verify that the type name generated by the transform rule is appropriate. The system
for consistency checks and dealing with exceptional cases is presented in [19].

It is possible, however, that the LF type and lexical form are not enough to deter-
mine the KR type. For example, in our basic electricity and electronics domain [20] the
word in corresponds to component-of in the phrase The bulb in 1, and to contains
in the phrase The bulb in the closed path. If this is the case, two transforms can be writ-
ten specifying alternative translations for in. Then, type restrictions from the domain
reasoner can be used to disambiguate between the possible KR types.

In section 4 we present a lexicon specialization algorithm that supports choosing the
appropriate KR type in ambiguous cases during parsing by automatically propagating
selectional restrictions directly into the lexicon. When the parse is complete, the ap-
propriate KR types for all the words can be read off directly from the lexical entries.
An alternative that we used in one of our systems is to apply all possible combinations
of transforms to a given LF form, and then decide on the correct translation based on
a combination of type restrictions and discourse constraints. This is more appropriate
for the domains where there are many entities with types not known until the reference
resolution is complete (for example, if there are many onscreen objects identified only
with labels such as a, b, c).

Other features that can be utilized in determining a KR type of an expression include
the presence of specific LF arguments in the LF form, and exceptional rules limiting the
application of transforms to certain LF subtypes. See [19] for details.



(define-lf-to-kr-transform load-transform-trips
:typevar ?vv
:typetransform ( LF::Fill-container → load)
:argtransforms (((:Agent ?a) → (actor ?vv ?a))

((:Theme ?t) → (cargo ?vv ?t))
((:Goal ?g) → (container ?vv ?g))))

Figure 8: Transform between the domain-independent form for LF::Filling and a
domain-specific load action which transforms the LF representation in Figure 4 into
the KR representation in Figure 6.

3.3 Transforming Semantic Arguments

Once the correspondence between LF types and KR concepts is established, the se-
mantic arguments from the LF representation have to be aligned with KR slots. The
following cases have to be considered in the alignment: establishing direct one-to-one
correspondence; cases where a semantic role may map to different KR slots depending
on type constraints; and cases where several semantic roles need to be collected in a
more complex structure.

The simplest case is where there is a one-to-one mapping between semantic roles and
slots in the corresponding KR type. An example of such a transform for load actions
in the Pacifica domain is shown in Figure 8. This maps any LF representation of type
LF::Fill-container into an instance of the load concept. This transform specifies that
the actor slot of load will be filled with the value of the :Agent argument of LF::Fill-
container (?a), the cargo slot with value of :Theme (?t) , and the container slot with
the value of :Goal (?g).

A KR ontology may make finer distinctions between arguments than would be ex-
pressed in a domain-general language ontology. For example, the general LF::Move type
describes a motion event with a :Theme argument which is the object moved. This cov-
ers cases like Send a truck to Avon and Send the people to Avon. However, the Pacifica
ontology distinguishes explicitly between cargo and vehicles. In such cases, multiple
transforms need to be specified to cover all possible alignments, and type restrictions in
the KR ontology are used to disambiguate between them.

Transforms that link instances of LF::Motion with transport and move KR classes
are shown in Figure 9. The transform in (a) applies to Send the people to Avon, while
the transform in (b) is applicable to Send the truck to Avon, because the KR type truck
is a subtype of vehicle, and the KR type people is a subtype of cargo in Pacifica
ontology.

Finally, a KR representation may use more complex structures than the LF repre-
sentation, requiring that LF arguments be combined into new KR frames. For example,
in the Pacifica domain paths are represented as complex slots of type geo-path while
in the LF representation all path adverbials are represented as separate semantic argu-
ments (see Section 2.2). The LF representation of Leave Abyss for Delta contains Abyss
as a :From-loc argument, and Delta as a :To-loc argument. Thus, we need a transform
which combines those LF arguments into a frame of type geo-path as a filler of the



(a) (define-lf-to-kr-transform transport-transform
:typevar ?vv :preconditions ((:obligatory :Theme))
:typetransform (LF::Motion → transport)
:argtransforms (((:Agent ?a) → (actor ?vv ?a))

((:Theme ?t) → (cargo ?vv ?t))
((:Instrument ?vh) → (vehicle ?vv ?vh))))

(b) (define-lf-to-kr-transform move-transform
:typetransform (LF::Motion → move)
:argtransforms (((:Agent ?a) → (actor ?vv ?a))

((:Theme ?t) → (vehicle ?vv ?t)))

Figure 9: The transforms for (a) transport and (b) move actions in the TRIPS
Pacifica domain. The precondition limits the transport transform application only to
the cases when the cargo slot can be filled.

(define-lf-to-kr-transform path-transform-trips
:typevar ?vv
:abstract t
:typetransform (LF::Motion → ?)
:argtransforms ((NIL → (path ?vv ?pv))

((:From-loc ?fl) → (source ?pv ?fl))
((:To-loc ?tl) → (destination ?pv ?tl))
((:Via ?va) → (mid-point ?pv ?va))))

Figure 10: A transform to collect all path adverbials into a single path frame in the
TRIPS Planner language. NIL in an argument denotes the operation of creating a new
frame.

path slot. The LF-KR transforms support an operator to instantiate new classes to
cover this case.

An example transform instantiating a complex-valued slot is shown in Figure 10. It
contains an argument mapping with NIL on the left-hand side, interpreted as a request
to instantiate a new frame. During transform application an instance of geo-path
object will be created to fill the path slot, and values from the :To-loc and :From-loc
arguments will be used to fill its slots.2 This transform generalizes over converting path
arguments of verbs of type LF::Motion, regardless of whether they are converted into
move or transport, and complements the transforms in Figure 9.

This discussion glosses over additional difficulties introduced by certain adjuncts,
especially modifiers such as straight in Go straight to Avon. Depending on the target
KR representation, this sentence can be handled in a variety of ways. In the Pacifica
ontology, straight can be seen as a slot filler in the geo-path frame; if an ontology
does not use a separate frame for path representations, straight may be defined as a slot

2The type of the new class is not specified in the transform explicitly, but taken from the type
restriction on the path slot of move and transport in the Pacifica ontology.



filler on the move frame; finally, in simpler domains it may be that the interpretation
chooses to ignore the modifiers, and drop them completely from the representation. Our
transform system supports these choices in possible mappings. A detailed description,
along with the algorithm to implement the transform, is provided in [19].

4 Lexicon Specialization

The previous section discussed the use of transforms to connect LF and KR ontologies.
In this section, we reuse the transforms in a pre-processing stage to specialize the lexicon.
By integrating the domain-specific semantic information into the lexicon and grammar,
we increase parsing speed and improve semantic disambiguation accuracy.

4.1 The Domain-Independent Lexicon

Lexicon entries in TRIPS encode the linking between syntactic structure and semantic
representation. The rules in the TRIPS grammar compute a set of grammatical func-
tions based on syntactic structure. Let us consider verbs, which are the heads of S
structures. There are potentially four grammatical roles in a basic S structure: the sub-
ject of the verb (SUBJ), the direct object (DOBJ), an indirect object (IOBJ), and other
non-NP complements (COMP). The lexicon entries then define the connection between
the grammatical roles and the LF arguments. Each entry identifies an LF type for the
verb, and defines a mapping from the grammatical roles to the semantic arguments used
in the LF. Type constraints from the LF ontology are propagated into the lexical entries
for use as selectional restrictions (note that these are necessarily weak since they are
domain-general).

As an example, one entry for the verb load would specify the information in Fig-
ure 11(a). The LF type indicates that an S structure headed by this verb will produce
an LF form with type (:* LF::Fill-container load), that the SUBJ fills the :Agent role
(if it is a physical object with semantic feature Intentional set), that the DOBJ fills
the :Theme role (if its Mobility feature is set to Movable), and the COMP, if it is a
prepositional phrase with preposition into, fills the :Goal role (if its Container feature
is +). 3

This entry licenses the sentence He loaded the cargo into the truck, but not Load the
ideas into the truck, since its direct object violates selectional restrictions. It also would
not work for He loaded the truck with oranges, because of the syntactic and semantic
restrictions. The latter usage is covered by a second entry for load (Figure 11(b)).
Together these entries cover the syntactic variation known as the spray/load alternation
[34] for load.

As this example illustrates, argument structure alternations are handled in the lex-
icon with templates that map semantic roles to grammatical positions. Common alter-
nations such as the passive (He loaded the truck with oranges / The truck was loaded
with oranges (by him)) and the dative (She gave him the book / She gave the book to
him) are handled in the grammar; the passive rules apply to verbs with a semantic role
that is linked to the direct object position (transitive verbs), and the dative alternation

3The selectional restrictions are obtained automatically from the LF definition shown in Figure 5
based on the role mappings specified in the lexical entry.



(a) LF Type: (:* LF::Fill-container load)
Preference: 1.0
Role mappings:

SUBJ NP :Agent (Phys-obj (intentional +))
DOBJ NP :Theme (Phys-obj (mobility movable))
COMP (PP (ptype into)) :Goal (Phys-obj (container +))

(b) LF Type: (:* LF::Fill-container load)
Preference: 1.0
Role mappings:

SUBJ NP :Agent (Phys-obj (intentional +))
DOBJ NP :Goal (Phys-obj (container +))
COMP (PP (ptype with)) :Theme (Phys-obj (mobility movable))

Figure 11: Lexical information for the verb load in the TRIPS lexicon (a) as in Load the
oranges into the truck (b) as in Load the truck with oranges.

rules apply to verbs with a semantic role that is linked to the indirect object position
(ditransitive verbs).

The grammar employs a scoring model for parse selection. Each lexical entry con-
tains a numerical preference value used to rank alternative senses that satisfy all syntac-
tic and semantic constraints. Grammar rules are also assigned preferences. The scoring
model is informed by development in multiple domains, and performs comparably to
corpus-based scoring in dialogue domains where corpus data is limited because it is
costly and time-consuming to collect [18].

The parse selection model is also used to guide the parser’s search. The parser uses
a n-best beam-search algorithm, and chooses the order in which the constituents are
added to the agenda based on their preference score. In our case, both entries have the
same preference value, so they will be treated as equally likely during parsing. In the
next section, we discuss how preferences are used in specialization to focus the search
on the word senses specific to the domain.

The lexical entries map syntactic structure to the more abstract semantic struc-
ture. The ontology mapping transforms add a third level of interpretation, mapping the
semantic arguments onto roles specific to the particular domain, and adding domain-
specific selectional restrictions, as described in the next section. Figure 12 shows the
whole process, adding the KR transform shown earlier in Figure 8. Note that Figure 12
shows the sources of information only, not a sequence of interpretations. In fact, most
of those representations are computed simultaneously by the parser as it builds the con-
stituents (the mappings between LF and KR arguments are computed during lexicon
specialization but not applied until interpretation starts).

The question arises as to whether all these levels are necessary. What advantage is
there, for instance, in having the intermediate domain-independent semantic represen-
tation? Could we not just produce mappings directly from the grammatical roles to the
KR ontology? The answer is the key to our claim of portability. If a developer had to
produce mappings directly from the grammatical relations to the KR ontology, adapt-
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Figure 12: Sources of information in the TRIPS semantic interpretation.

ing the system to a new domain would be a significant programming effort, involving
modification of a large number of lexicon entries. For example, one would need to define
separate mappings from each of the syntactic configurations possible for load to the KR
representation, and even more mappings to cover linguistic variation in path expressions
(discussed in Section 2.2). The intermediate LF representation allows us to deal with
all the domain-independent complications just once and then to reuse this work in every
new domain. There are considerably fewer LF types than lexical entries, so producing
the mapping rules for a new domain is a more manageable task. In addition, since
the LF types are organized in an inheritance hierarchy, we can often state a mapping
rule that applies to multiple LF types. The reduction in work when adapting to a new
domain is substantial. We provide empirical evidence to this effect in the evaluation in
Section 5.

4.2 Specializing the Lexicon

To specialize the lexicon, we pre-process every lexical entry by determining all possible
transforms that apply to its LF type. For each transform that applies, a new sense
definition is created that is identical to the first definition except that a new semantic
feature called Kr-type is added, with the value extracted from the ontology restrictions
specified in the transform. Given the situation shown in Figure 12, where the transform
in Figure 8 was applied to an entry, we use the definition of load in the KR ontology
(shown in Figure 3) to find that the filler of the Vehicle role must be of type vehicle.
Thus the semantic feature (Kr-type vehicle) is added to the DOBJ selectional restric-
tions. Likewise, the restriction (Kr-type commodity) is added to the semantic feature
vector for the COMP.

In addition to adding the Kr-type feature, we use feature inference rules that allow
the parser to derive additional semantic restrictions. In Pacifica, we defined a rule that
allows the parser to infer (Origin Human)4 from (Kr-type person), and another that
allows the system to infer (Form Solid-Object) from (Origin Human).5 After the feature

4Origin is a domain-independent feature with values human,animal,plant,non-living,artifact
5Feature inference is a well founded mechanism used throughout the LF ontology to also describe



LF Type: (:* LF::Fill-container load)
Preference: 1.03
Role mappings:

SUBJ NP :Agent (Phys-obj (intentional +)
(Kr-type person) (Origin Human)
(Form Solid-Object))

DOBJ NP :Theme (Phys-obj (mobility movable)
(Kr-type commodity)
(Origin Artifact)
(Form Solid-Object))

COMP (PP (ptype into)) :Goal (Phys-obj (container +)
(Kr-type vehicle))

Figure 13: Lexical information for the specialized verb load, corresponding to the non-
specialized entry in Figure 11(a). The changes made by the specialization algorithm are
highlighted in bold.

inference rules are completed, we have a revised lexical entry with tighter semantic
features based on the domain, as shown in Figure 13.6

The algorithm for computing transforms is shown in Figure 14. In addition to
tightening selectional restrictions, we increase the preference value of specialized entries
by a pre-determined factor, to ensure that they are tried first during parsing. We used
the factor of 1.03 in our experiments, adjusted based on parsing speed and accuracy
results on a development dataset.

Once the new lexical entries have been generated we have a domain-specialized
parser, without having to add any additional mechanisms to the parser except for the
generic capability to query subtype relations in the KR ontology when it is checking
the Kr-type feature. We also have the option of either retaining the original entry in
addition to the specialized entries, or removing it, depending on how tightly we expect
the language to fit the domain model.

Our lexicon specialization process is designed to easily integrate the specialized and
non-specialized entries. If no specialization is found for a lexical entry, it remains in the
lexicon, though with a lower preference, with the assumption that Kr-type is assigned an
undefined value KR-root, which will satisfy any Kr-type restriction. When the parser an-
alyzes a sentence, it will try the specialized senses first because their preference is higher,
but will use non-specialized entries as necessary to obtain a full parse. Thus, the search
focuses on words specific to the domain, but words from the domain-independent lan-
guage interpretation components are intermixed freely with domain-specialized words.

dependencies between domain-independent feature values [19].
6There will also be a similar specialized entry obtained from the entry in Figure 11(b).



Given a lexical entry E:

1. Determine applicable KR transforms based on the LF type of E.

2. For each transform, make a copy of the entry and perform the following:

(a) Add the feature (Kr-type Tkr) where TKR is the KR type in the mapping

(b) Query the KR ontology for type restrictions on the roles of TKR.

(c) Add the KR restrictions to the selectional restrictions on the appropriate
arguments

(d) Apply the feature inference rules to new changed semantic feature vector to
add entailed features.

3. Increase the preference of the specialized sense by a pre-defined factor

Figure 14: An algorithm for specializing lexical entries.

5 Evaluation

5.1 Portability

Overall system portability is influenced by two main factors: the coverage of a domain-
general grammar in new domains, and the effort involved in customizing the system to
a new domain.

The detailed speed and accuracy evaluation presented in the next section shows that
the generic version of the grammar performs similarly well on two evaluation domains.
Previous evaluations of our generic (unspecialized) grammar on completely new domains
[18] demonstrated that the grammar has sentence-level recall (i.e. can find a complete
parse) for 63% of sentences in human-human task-oriented dialogue, with 69% precision
(i.e. can find a parse with fully complete and correct semantic representation). This
provides a good starting point for porting a dialogue system to a new domain. Many of
the failures are due to gaps in lexical coverage (our domain-general lexicon is relatively
small, as seen in Table 2). However, we have recently developed methods for rapidly
expanding lexical coverage with the aid of existing wide-coverage lexical resources [50,
16], which help alleviate coverage problems. The results in the next section also show
that our specialization mechanisms help improve parsing precision.

The lexicon statistics presented in Table 2 also show that the amount of work involved
in domain customization is relatively small. The number of mappings that need to
be written is an order of magnitude smaller than the number of lexical entries, and
is proportionate to the size of the domain as defined by the number of classes. It
is also about 8 times smaller than the number of specialized word senses that result
from the mapping, which demonstrates that mapping from the LF ontology rather
than lexical entries directly provides useful generalizations. In an earlier version of a
similar evaluation, we also demonstrated that speed and accuracy improvements for
specialization persisted even after a domain-general grammar was extended to improve
coverage [19].



Domain Lex. entries KR classes Mappings Specialized entries
Generic 2457 - - -
Medadvisor 2575 182 95 665
Pacifica 2656 210 98 720

Table 2: Lexicon and domain statistics for our evaluation domains.

Table 3 lists the steps involved in porting the system to a new domain. Note that
the first three items in the table (defining a domain ontology, defining new words and
defining new grammar rules) need to be done in any system which is being employed in
a new domain. The advantage of our approach is that instead of trying to change and
adapt the lexical entries and the rules from the previous domain to suit the language in
the new domain, we can re-use the existing lexicon and grammar. Developing a wide-
coverage lexicon and grammar is a time-consuming task, but it is a one-time investment
that requires diminishing amounts of work as new domains are added, as demonstrated
in the case study discussed in this section.

In this approach, a domain reasoner needs to provide an ontology with a hierarchy
of possible domain type and relations (true in all the domains we have encountered so
far). To derive maximal benefit in terms of improving parsing speed and accuracy, the
domain reasoner should also provide type restrictions on all arguments. Depending on
the domain, this may require some additional work from the developers, but it is also
a common feature of ontologies implemented in knowledge-based systems. Finally, it
would be helpful (though not essential) to have a domain representation that is mostly
compositional - see Section 6 for further discussion.

Writing LF-KR transforms is the most time-consuming part of the domain special-
ization process. However, the size of the transform set is proportional to the number
of entities and relations in the KR ontology, which is considerably smaller than the set
of all lexical entries in the domain. In addition, the generalizations provided by the LF
ontology, including its hierarchical structure and the encoding of semantic concepts and
roles independently of surface syntactic form, considerably reduce the amount of effort
necessary in transform writing.

As a case study, we implemented a language interpreter in a new domain, a basic
electricity and electronics tutor [53]. The task domain was a lab teaching the student
to measure current in a circuit, supported by an existing domain reasoner implemented
using the LOOM knowledge representation [35]. Domain statistics are presented in
Table 4.

This was a challenging test for our system, because the parser had to cope both with
a new subject domain (electricity) and a new genre (tutoring rather than collaborative
planning). This is reflected in the relatively high number of lexical entries which needed
to be added. These included both domain terms not encountered previously (e.g.,
multimeter, terminal) and domain-general terms used in tutoring but not frequent in our
previous problem-solving domains (e.g., learn, represent, signify). Around 20 of these
new entries were new subcategorization frames that we had not previously encountered
in our corpora for words already defined in the lexicon. This is reflected in the small
number of changes required to the LF ontology to cover the new word types. We also



Step Comment
Define a domain model and the KR on-
tology.

Required for any dialogue system, part
of building the reasoning components

Define lexical entries and LF types as
needed for previously unseen words

Domain-specific terminology and any
words not encountered in previous do-
mains.

Modify the grammar with new domain-
independent rules as needed to cover
new syntactic constructs.

Effort diminishes with time as the cov-
erage becomes more complete

Define the LF-KR transforms. The main required step to link LF and
KR ontologies.

Define feature inference rules. Optional, but helpful in improving pars-
ing speed and accuracy

Table 3: Steps to porting our interpretation architecture to a new domain.

Domain
Concepts

Domain Re-
lations

Transforms Lexical en-
tries added

LF types
added

Grammar
rules added

59 68 22 75 8 1

Table 4: Domain statistics for Beetle domain customization.

had to add a grammar rule for relative clauses acting as adverbials.
The corpus collected for the domain contained fairly complex sentences such as

What component should I connect to the battery using wire 1. There was also a large
number of pronouns and definite descriptions referring to objects in the simulation
environment. We therefore implemented a reference resolution algorithm using features
from our semantic representation.7 It took less than 1 month’s effort by a developer
familiar with the grammar and LF ontology to add the words missing from the lexicon,
write a simple reference resolution module, add a set of transforms to map the semantic
representations to the domain ontology, and implement a converter between AKRL and
LOOM syntax.

This case study shows the potential of our method for rapid development of dialogue
systems in new domains. Even though some words and a grammar rule needed to be
added, once the correct definitions were in place we immediately got correct domain-
independent and domain-specific interpretations for the utterances involved. Moreover,
we continued to observe improvements from sharing the grammar between the domains.
During our specialization experiment, we held the grammar without change. At the
end, we conducted a coverage evaluation on parsing human-human dialogues in the
BEE domain, recording 50% sentence-level accuracy (details to be reported elsewhere).
Immediately after concluding the evaluation, we brought in the changes in the grammar
done in the interim for the benefit of the computer purchasing domain, and conducted
the evaluation again. The coverage increased to 54% without any additional work
involved, just through sharing the grammar development between the domains. We plan

7Note that LOOM does not support the representation features needed for reference resolution, so
having an intermediate semantic representation was a requirement for system implementation.
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Figure 15: A sample lattice for that looks good, where the best speech hypothesis is that
looks gave it. Numbers at nodes denote confidence scores for lexical items, numbers on
arcs denote the confidence scores on transitions.

to conduct a more detailed evaluation of sharing between the domains and portability
improvements in future work.

5.2 Speed and Accuracy

To evaluate the effect of our lexicon specialization algorithm on parsing speed and
semantic representation accuracy, we compare the behavior of generic and specialized
versions of our lexicon on speech lattices in two application domains. We chose lattices
for our evaluation because they offer a way to utilize the power of syntactic parsing
to make the system more robust. Speech recognition in a speaker-independent system
is a difficult task, and depending on our domain, the 1-best sentence accuracy of our
speech models could be as low as 50%. A common approach to this problem is to have
the recognizer return a speech lattice, which is a weighted graph representing a set of
recognition hypotheses.

A part of a lattice for the sentence That looks good, taken from an actual system
run, is shown in Figure 15. The highest scoring sequence is That looks gave it, which
is not syntactically correct. Using the syntactic information, the parser should be able
to determine that That looks good is a better interpretation. To do that, it needs to
be able to select between a large number of possible word sequences, which seriously
complicates the parsing task.

The evaluation was conducted on the same domain-general grammar and lexicon and
two different domains: transportation (Pacifica) and medication scheduling (Medadvi-
sor). We collected lattices produced by our speech recognizer during regular system
runs based on 50-best recognition hypotheses to use as test data.

As a measure of speed we report average parse times per lattice. As measures of
representation accuracy, we use word error rate and concept error rate. Word error rate
is the measure of how well the parser can pick out the exact words the user said from the
lattices. However, word error rate does not fully reflect the impact of specialization. For
example, the parser has no grounds to choose between different verb forms (can/could),
or between different determiners (the/this/that). The specialization can only affect



Domain Sents Words
per sent.
(stdev)

Time-
generic

Time-
KR

Constits-
generic

Constits-
KR

Medadvisor 33 6.03 (2.11) 10.06 4.04** 28243 15951 **
Pacifica 189 4.24 (3.09) 13.67 5.15** 153966 95760 **

Table 5: Average parsing time per lattice in seconds, and total number of constituents
built by the specialized grammar compared to the generic grammar. Statistically sig-
nificant differences are indicated with **. Tests were done on a 1.6Hz Pentium 4 Linux
workstation with 512M of memory running Allegro Common Lisp 7.0.

Domain Word count WER Concept count CER
Generic-Medadvisor 199 0.17 200 0.17
KR-Medadvisor 199 0.18 200 0.12**
Generic-Pacifica 1041 0.15 812 0.19
KR-Pacifica 1041 0.13 812 0.16**

Table 6: Semantic accuracy evaluation for the specialized grammar compared to the
generic grammar. Measures reported are word error rate(WER) and concept error rate
(CER). Statistically significant differences between generic and specialized versions are
indicated with **.

choices of content words, on which the domain can place semantic constraints. Therefore
we measure the error rate on concepts, using the same formula as for word error rate,
but on sequences of LF types corresponding to content words.

The results presented in Table 5 show that lexicon specialization considerably in-
creases parsing speed and improves disambiguation accuracy. The times represent the
average parsing time per lattice, and differences are significant at p < 0.0001 (paired
2-tailed t-test, t(33) = 4.74, t(189) = 8.86). Note that each lattice in effect corresponds
to 50 different utterances to be parsed. Some of the parse time is due to garbage col-
lection, which could be reduced by improving the unification algorithm [31]. However,
there is also a significant reduction in the number of constituents built which shows that
the overall parsing efficiency is significantly improved with this method.

Table 6 presents results on representation accuracy. The differences in word error
rates are not statistically significant, though there is a trend for improvement in the
Pacifica domain (Pacifica: p < 0.08, Medadvisor: p < 0.77). However, the improve-
ments in content word error rates are significant in both domains (Pacifica: p < 0.02,
Medadvisor: p < 0.05).8

The reason why overall word error rate differences are not statistically significant
is due to the treatment of non-content words in our scoring function. During lexicon
specialization we increased the preference values associated with content words related
to the domain (based on defined transforms), but also of non-content functional words
such as determiners and prepositions to avoid unnecessary deletions. However, this

8We used a paired 2-tailed t-test to compare the distributions of edit distances to evaluate significance,
as suggested in [48].



Words uttered Words selected by generic
version

Words selected with KR

How long will that take How will that wait How long will that take
Let’s use the helicopter in-
stead

Legs use the helicopter in-
stead

Let’s use the helicopter in-
stead

Meanwhile use the other
truck to get the people
from Exodus to Delta

NO SPANNING PARSE Meanwhile use the other
truck to drive the people
from Exodus to Delta

Table 7: Examples of words picked from the same lattice with and without specialization.

resulted in a number of extra insertions; for example, discourse adverbials such as now
were inserted if present in the lattice. In addition, different tense and pronoun forms
were often substituted based on the lattice, because domain information is not helpful
in deciding on the appropriate word form to choose.

The improvements in concept error rates in both domains show that the algorithm
helps build better semantic representations of utterance content. Finding better scoring
functions to address non-content words together with content words is planned as future
work.

The improvement in concept accuracy comes from two sources. The tighter selec-
tional restrictions limit the search space and help to correctly disambiguate according to
domain knowledge. The increased preference values for specialized entries ensure that
these are tried first during parsing, and that constituents with more specialized entries
are preferred over those which contain out-of-domain words. Both of these strategies
also help the parser find an interpretation for in-domain utterances faster, resulting in
significant speed increases.

To illustrate how specialization helps to pick better word sequences from lattices,
Table 7 lists several example sentences from the evaluation, listing the words that were
said, and the sentence that was selected with and without specialization. In the first two
examples the non-specialized version returns questionable interpretations, which never-
theless are difficult to exclude on a domain-independent basis.9 In Pacifica, however, the
reasoners know nothing about manner of waiting, but we can answer questions about
the duration of actions. Domain constraints also specify that only people are suitable
actors for the class use. This is reflected in the existence of a corresponding LF to KR
mapping and thus specialized lexicon entries with a higher preference, leading the parser
to choose the correct interpretation.

The last example in the table comes from a longer utterance, and a correspondingly
large lattice with a very large number of possible paths. The non-specialized version
ran over the limit of chart size specified in the parser and gave up before a spanning
parse could be found. The specialized version actually found a plausible interpretation,
even if it substituted the more specific word drive for get.

Overall, this evaluation demonstrates that our customization technique promotes
parser portability between domains, while providing significant speed and accuracy im-

9Manner modifiers are possible for wait, as in I will wait patiently, and the corresponding question
is strange for pragmatic rather than syntactic or semantic reasons.



provements when parsing in-domain utterances through propagation of domain-specific
restrictions into the lexicon.

6 Discussion

In this paper we argue that maintaining separate semantic and knowledge representa-
tions linked via an ontology mapping procedure helps alleviate the tension between the
needs of semantic interpretation and domain reasoning components, and, in particular,
helps us build a more portable parser for semantic interpretation, while providing speed
and accuracy improvements via domain specialization.

We presented evidence of parser portability in Section 5.1. Further evidence comes
from the use of our parser and grammar across domains. In addition to the four collab-
orative problem-solving domains from the TRIPS system (see Section 2), the parser has
been ported to two different tutoring domains: teaching basic electricity and electron-
ics and tutoring symbolic differentiation. The collaborative problem-solving domains
use the same set of language interpretation components for parsing and discourse inter-
pretation, including reference resolution, intended speech act recognition, and ellipsis/
fragment interpretation. During discourse interpretation, calls are made to the domain-
specific reasoners to evaluate various hypotheses, but all the algorithms are driven from
the domain-general representations and the interpretation components do not require
any modification when switching domains. All the required changes for interfacing with
a new set of domain reasoners are captured in the ontology transforms. Furthermore,
our most recent systems also share a domain-general surface generation capability that
is driven by automatically reversing the ontology transforms [12].

The two tutoring domains use a different interpretation system currently under de-
velopment, because existing models of collaborative problem-solving dialogue do not
cover many dialogue phenomena common in tutoring [21]. However, these two domains
already share the same reference resolution module utilizing our semantic representa-
tions, and the dialogue managers (implemented using the TrindiKit [32]) will share
substantial classes of update rules based on our LF representations, using linguistic fea-
tures to detect indirect speech acts, hedging and other phenomena common in tutorial
dialogue.

Recent advances in developing wide-coverage lexical semantic databases provide op-
portunities to improve system portability further. When our system was originally de-
veloped, wide-coverage lexicons with word classes and semantic roles suitable for parsing
were not yet available. We used a pre-release version of FrameNet [27] as the basis for
our LF ontology, but needed to modify it to make parsing and semantic disambiguation
possible [22]. Since then, semantic role labeling parsers have been developed [11, 25]
that output semantic frames with sense distinctions at a level similar to our LF ontol-
ogy. Thus, a similar system for mapping between domain-general and domain-specific
representations can help leverage their output in connection with domain reasoners.

This paper describes the issues which need to be addressed in the mappings between
semantic and knowledge representations: aligning the ontologies at class level, and then
transforming semantic arguments between the aligned classes. The latter requires con-
sidering cases where the semantic arguments can be aligned straightforwardly by direct



mapping, or may need to be combined into more complex structures, as discussed in
Section 3.3.

The ontology mapping approach assumes that the KR ontology into which the se-
mantic representations are being mapped employs compositional representations. If a
KR representation contains many composite concepts such as LitLightBulb, NonLit-
Lightbulb, OpenCircuit, ClosedCircuit, then the ontology mapping may be less effective,
because many individual rules may have to be written to build up each composite con-
cept from multiple concepts in the LF representation. Recently we have added some
general abilities to support such cases in the mappings by defining customized functions
to combine concepts. Composite concepts, however, present their own challenges to
the maintenance of KR representations because of the large number of different classes.
Thus it is reasonable to assume that for ontologies in medium scale domains, composi-
tionality will also be maintained in the domain ontology.

One opportunity for improvement is finding ways to generate automatically domain-
general to domain-specific mappings. A possible approach would be to use ontology and
schema matching techniques developed in the semantic web community [46]. The string-
based and taxonomy-based techniques would likely to be the most suitable to leverage
the hierarchical structure of the domain-general ontology, as well as the string similarity
between concept names.

In future we also plan to explore the use of our architecture with other deep gram-
mars. The information in our base lexicon is not strongly dependent on a specific
syntactic theory. As long as a grammar is able to identify syntactic functions such as
subject and direct object, it should be possible to augment the semantic representa-
tion output by the grammar with semantic classes and roles from our ontology. Such
a combination could be beneficial both for our interpreter, by providing another fast
and reliable grammar to use, and for wide-coverage syntactic grammars, by providing a
framework for linking semantic and domain-specific representations.

The underlying assumption in this work, supported by practical experience, is that
semantic representations and domain representations have different requirements both
in form (i.e. syntactic devices to express underspecification, undefined and fragmentary
interpretations etc.) and in content (i.e. semantic hierarchies and semantic roles suitable
for interpretation or reasoning). Building more NL-like knowledge representations would
help address issues of form. However, reasoning in dialogue systems requires detailed
domain models, including axioms specifying relationships between objects and actions.
These are more difficult to build in a large-scale domain-independent fashion. Thus,
our approach provides a workable alternative for connecting semantic and knowledge
representations in practical systems.

6.1 Related Work

Currently, the most common approach for building interpretation modules for dialogue
systems is using semantic grammars that directly link the lexicon entries to frames in
a domain-specific representation, augmented with corpus-based methods to learn such
mappings in small domains [45, 41]. However, assumptions about frame structure limits
the expressivity of the grammars, which do not fully handle the complexities involved in
quantification, negation, or many complex modifiers. Therefore they work best in sys-



tems where the dialogue state is encoded as a set of fixed contexts (see [3] for a detailed
discussion). Thus, linguistically motivated parsers have been used for medium scale do-
mains, including LINGO[14] for appointment scheduling in VerbMobil [30], CARMEL
[43] for tutoring qualitative physics and OpenCCG [7] for parsing mathematical proofs
in DIALOG [52].

LINGO ERG provides sophisticated models of underspecification in scoping [15],
as well as for interpreting fragments in context [44]. It was used in building a dialogue
system in the appointment scheduling domain [30]. This domain, however, involves only
a very simple model of domain knowledge (the only thing which is necessary to know is
which times are available, and which times are busy). Implementing the same methods in
other domains with more complex knowledge representations remains an open problem,
in part due to the difficulty of building a domain model capable of reasoning with the
domain-independent representations output by LINGO.

CARMEL uses a syntactic parser based on the COMLEX syntactic lexicon [36] to
provide wide syntactic coverage. However, it requires re-linking lexical entries in each
domain to domain-specific knowledge representations, and does not provide general
semantic representations for quantifiers and referring expressions. Thus it suffers from
the same problems as domain-specific grammars where the limitations on expressivity
in knowledge representation limit its usability for semantic interpretation.

The DIALOG system uses a deep parser for parsing mathematical discourse which
outputs semantic role labels based on tectogrammatical relations, but without marked
word senses. The system separates the utterance content used in dialogue processing
and in reasoning, though we have not been able to find a detailed description of the
algorithm used. Our system offers a clear architecture for this separation, because the
domain-general representations are clearly defined through types in the LF ontology
and linked to the KR ontology via LF-KR transforms.

The idea of using a multi-level representation to separate linguistic knowledge from
domain application knowledge has been developed previously in the PHLIQA1 question-
answering system [38, 9]. PHLIQA1 initially constructs a semantic deep structure for
a natural language query using ambiguous predicate names corresponding to lexemes.
This semantic structure is then transformed into an intermediate representation consis-
tent with the ”world model” of the system, independent of both the input language and
the back-end database structure, which is then used to compute the database query.

Our approach shares the idea of using multiple levels of representation, but is dif-
ferent in that it relies on a domain-independent ontology of semantic types, disam-
biguated based on domain-independent syntactic and semantic features. In our system,
we assume that the domain model may still contain distinctions that cannot be disam-
biguated within a domain-independent model, which is why our approach focuses on the
transforms as mappings between the domain-independent and domain-specific ontolo-
gies. Additionally, we assume that it generally makes sense to disambiguate domain-
independent types through a combination of syntactic and semantic features, hence the
reason to connect the domain-independent ontology types directly to the lexical entries.

FrameNet has been used as an intermediate semantic representation in question
answering [39] and information extraction [49]. In the information extraction evalua-
tion, extraction patterns were formulated using FrameNet frames rather than individual
words. The FrameNet-based system performed worse than the fully customized system,



but could be written much faster. This points to the potential usefulness of this ap-
proach in bootstrapping system development: the intermediate representation can be
used to quickly start system development, and implement semantic interpretation mod-
ules based on domain-independent algorithms, while the KR mapping can be tuned for
maximum precision in further development, possibly through the use of corpus-based
methods.

Palmer et al. propose that different levels of sense granularities are necessary for dif-
ferent applications [40]. They identify sense distinctions at a medium granularity above
the purely syntax-based senses as the appropriate level for an information extraction
task. This is consistent with our approach of defining an intermediate level ontology as
a starting point to connect language interpretation with reasoning tasks.

A rich ontology with word senses at different levels of granularity is now being
developed based on corpus annotations [26]. The availability of such an ontology, and
development of word sense disambiguation methods with the appropriate word senses,
would provide another resource for intermediate-level information useful in connection
to reasoning.

7 Conclusions

In this paper, we described a two-layer architecture for building multi-domain parsers
and interpretation components. We separate domain-general and domain-specific infor-
mation by maintaining separate ontologies: a domain-general LF ontology for language
representation, and domain- and application-specific KR ontologies. The ontologies
are linked with the help of LF-KR transforms. The architecture allows us to utilize
a portable linguistically motivated parser capable of interpreting complex natural lan-
guage sentences and producing semantic representations for interpretation. Our special-
ization technique allows us to link the semantic representation with domain knowledge
representations simply by defining a small number of transforms between the represen-
tations. This approach allows us to utilize semantic representations to build portable
interpretation modules, while linking them to domain knowledge representations in do-
main reasoners. We demonstrated that this approach helps maintain a parser and
grammar that are portable between domains, while our lexicon specialization algorithm
brings speed and accuracy improvements in comparison to the generic parser.
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